Foto: Eduardo Hajdu/Museu Nacional/UFRJ

Bakterien, Algen und Pilze bilden auf Oberflächen sogenannte Biofilme, eine schleimige Schicht aus Zuckern und Proteinen, die für die Biokatalyse sehr hilfreich ist. Wissenschaftler der Universität Birmingham konnten durch synthetische Polymere die Biofilmbildung von Bakterien steigern, um diese für eine effiziente Biokatalyse nutzbar zu machen.

Foto: Eduardo Hajdu/Museu Nacional/UFRJ

Brasilianische Forscher entdeckten in einem Meeresschwamm bioaktive Verbindungen, die in der Lage sind, Bakterien abzutöten, gegen die derzeit verfügbare Antibiotika wirkungslos sind. Das könnte zur Entwicklung dringend benötigter neuer Antibiotika führen.

Wie ein Zopf umeinander gewunden sind die Filamente des bakteriellen Enzyms HDCR, das aus gasförmigem H2 und CO2 Ameisensäure herstellt. Bild: Verena Resch – https://luminous-lab.com/

Acetogene Bakterien wandeln Kohlendioxid mit Wasserstoff zu Ameisensäure um, die anaerob zu den Endprodukten Acetat und Ethanol umgewandelt wird. An der Umwandlung des CO2 ist ein spezielles Enzym beteiligt, dessen räumliche Struktur nun von einem Forscherteam der Goethe-Universität Frankfurt zusammen mit Wissenschaftlern aus Marburg und Basel aufgeklärt wurde, und damit die Besonderheiten der sehr wirkungsvollen Arbeitsweise besser nachvollzogen werden können. Die Mikrobiologen zeigen damit neue Wege für eine grüne Energiegewinnung sowie eine Möglichkeit der CO2-Senkung auf. Ihre Ergebnisse stellte das Forscherteam im Fachmagazin Nature vor.

Der Giebel vermehrt sich vor allem durch  „Jungfernzeugung“. Die produzierten Nachkommen sind Klone des Giebelweibchens, Abb.: Fabian Oswald

Carassius gibelio, der Giebel, ist ein Verwandter des Goldfischs und konkurriert mit der Karausche um den Lebensraum. Die invasive Art stammt aus Asien und hat den Samenraub professionalisiert. Wissenschaftler der Universität Innsbruck sowie ihre Kollegen aus Berlin und Würzburg haben nun erstmals das vollständige Genom des Giebels beschrieben.

Ein Maus-Blastoid, das für verschiedene zelluläre Komponenten fluoreszierend gefärbt wurde. ©Rivron/CellStemCell/IMBA

Embryonen organisieren im frühesten Entwicklungsstadium ihre Umgebung so, dass diese sie in den kommenden Monaten gut versorgen kann. Das entdeckten Wissenschaftler des Instituts für Molekulare Biotechnologie (IMBA) in Wien. Sie nutzten dafür Blastoide (In-vitro-Modelle der Blastozyste).

TIR Enzyme produzieren Botenstoffe, die zwei Wege der Immunität regulieren; Bildquelle: Wen Song, Aolin Jia, Shijia Huang, Giuliana Hessler and Henriette Laessle

Schädlinge, Krankheitserreger oder Pilze machen vielen Pflanzen zu schaffen und sind eine Herausforderung für die Landwirtschaft. Eine kürzlich gemachte Entdeckung könnte einen Weg eröffnen, Pflanzen widerstandsfähiger gegen Schaderreger zu machen und eine ökologischere Lebensmittelproduktion zu gewährleisten.

Adhäsion von Bartonella henselae (blau) an menschliche Blutgefäßzellen (rot). Diese Bindung des Bakteriums an die Wirtszellen könnte mit Hilfe von sogenannten „Antiliganden“ blockiert werden. Credits: https://www.mdpi.com/2075-4418/11/7/1259

Forscher des Universitätsklinikums Frankfurt am Main und der Goethe-Universität haben in einem internationalen Projekt den Mechanismus entschlüsselt, wie sich Bakterien an die Oberfläche von Zellen heften (bakterielle Adhärenz). Ihre Entdeckung bietet die Chance zur Entwicklung einer neuen Klasse von Antibiotika, die ein Eindringen der Erreger bereits zu Beginn einer Infektion verhindert.

Diese weißen Fädchen sind bis zu zwei Zentimeter lang – und jedes besteht aus nur einer einzigen Bakterienzelle. © Tomas Tyml

Die meisten Bakterien sind nur wenige Mikrometer groß und lassen sich nur unter dem Mikroskop betrachten. Nun haben Forscher um Jean-Marie Volland vom Lawrence Berkeley National Laboratory in Berkeley von einem schwefeloxidierenden Bakterium berichtet, welches um ein Vielfaches größer ist und daher mit bloßem Auge wahrnehmbar. 

Mikroskopische Aufnahme einer in einer Hautpore steckenden Demodex folliculorum-Milbe
Foto: Alejandra Perotti

Wissenschaftler der Universität Wien haben per DNA-Analyse das geheime Leben der Demodex folliculorum-Milbe ergründet, der häufigsten Hautbalgmilbenart, die der Mensch sein Leben lang mit sich herumträgt.  

Prof. Dr. Wolfgang Weigand bespricht sich via Zoom mit dem Kollegen Dr. Mario Grosch.
Foto: Anne Günther (Universität Jena)

Ein internationales Forscherteam hat in einem chemischen Experiment gezeigt, wie die ersten Biomoleküle auf der Erde entstanden sein könnten. Eine zufällige Wiederentdeckung der besonders reaktiven Form von Eisensulfid, genannt Mackinawit, machte dies möglich. Das Mineral wirkte bei der Reaktion als Katalysator, an dessen Oberfläche sich Biomoleküle bilden können.